localization operators on homogeneous spaces

نویسندگان

r. kamyabi gol

f. esmaeelzadeh

r. raisi tousi

چکیده

let $g$ be a locally compact group, $h$ be a compact subgroup of $g$ and $varpi$ be a representation of the homogeneous space $g/h$ on a hilbert space $mathcal h$. for $psi in l^p(g/h), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $l_{psi,zeta} $ on $mathcal h$ and we show that it is a bounded operator. moreover, we prove that the localization operator is in schatten $p$-class and also it is a compact operator for $ 1leq p leqinfty$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

Invariant Differential Operators on Nonreductive Homogeneous Spaces

A systematic exposition is given of the theory of invariant differential operators on a not necessarily reductive homogeneous space. This exposition is modelled on Helgason’s treatment of the general reductive case and the special nonreductive case of the space of horocycles. As a final application the differential operators on (not a priori reductive) isotropic pseudo-Riemannian spaces are cha...

متن کامل

a class of compact operators on homogeneous spaces

let  $varpi$ be a representation of the homogeneous space $g/h$, where $g$ be a locally compact group and  $h$ be a compact subgroup of $g$. for  an admissible wavelet $zeta$ for $varpi$  and $psi in l^p(g/h), 1leq p

متن کامل

Szego Limit Theorems for Toeplitz Operators on Compact Homogeneous Spaces

Let / be a real valued integrable function on a compact homogeneous space M = K\G and M¡ the operator of pointwise multiplication by /. The authors consider families of Toeplitz operators T¡P = PM¡P as P ranges over a net of orthogonal projections from L2(M) to finite dimensional G-invariant subspaces. Necessary and sufficient conditions are given on the net in order that the distribution of ei...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 39

شماره 3 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023